报告时间:2017年12月29日(周五)10:30
报告地点:西校区理学楼404会议室
报告题目:On non-asymptotic integer order and fractional order differentiators
报告人:刘大研
报告人简介:刘大研分别于2005年和2007年获得法国里尔一大学士和硕士学位,并于2011年获得里尔一大应用数学博士学位。在法国国立高等工程技术学校和沙特阿拉伯国王阿卜杜拉科技大学完成博士后工作后,他于2013年获得法国中部卢瓦尔河谷国立应用科学学院副教授永久职位,并任职法国中部大区PRISME实验室控制组。刘博士的主要研究兴趣在于整数阶和分数阶系统的辨识和估计。到目前为止,他已经在国际期刊和会议上发表40多篇论文,例如IEEE Transactions on Automatic Control, Automatica, SIAM Journal of Scientific Computing, Systems & Control Letters等。2012年他获得了中国政府颁发的海外优秀自费留学生奖。自2017年10月起,他被任命为国际自动控制联盟《线性控制系统》技术委员会成员。
报告内容简介:For cost and technological reasons, there always exist some variables and parameters which cannot be measured. Moreover, the measurements usually contain noises. Sometime, fast estimations with convergence in finite-time are required in on-line applications. For these reasons, the modulating functions method introduced by Shinbrot in 1954 and the algebraic parametric estimation method introduced by Fliess and Sira-Ramirez in 2003 both originally for system identification have been applied and extended in signal processing and automatic control, such as parameter estimation and numerical differentiation, etc. The two methods have the following advantages. Firstly, the obtained estimators are exactly given by integral formulae of the observation signal. Thus, they are algebraic and non-asymptotic. Fast estimation can be provided using sliding integration window with finite length. The knowledge of initial conditions is not needed and the derivatives of noisy signals don't need to be calculated. Moreover, thanks to the integrals in the formulae, they are robust with respect to corrupting noises without the need of knowing in priori their statistical properties. In this talk, the ideas of these two methods will be explained. Moreover, it will be shown how to apply these methods to design integer order and fractional order differentiators.
欢迎全校师生参加!
理学院 国际合作处
2017年12月26日